FP2 Summation of finite series

2 (a) Given that

$$
\frac{1}{r(r+1)(r+2)}=\frac{A}{r(r+1)}+\frac{B}{(r+1)(r+2)}
$$

show that $A=\frac{1}{2}$ and find the value of B.
(3 marks)
(b) Use the method of differences to find

$$
\sum_{r=10}^{98} \frac{1}{r(r+1)(r+2)}
$$

giving your answer as a rational number.

2 (a) Given that

$$
\frac{1}{4 r^{2}-1}=\frac{A}{2 r-1}+\frac{B}{2 r+1}
$$

find the values of A and B.
(b) Use the method of differences to show that

$$
\begin{equation*}
\sum_{r=1}^{n} \frac{1}{4 r^{2}-1}=\frac{n}{2 n+1} \tag{3marks}
\end{equation*}
$$

(c) Find the least value of n for which $\sum_{r=1}^{n} \frac{1}{4 r^{2}-1}$ differs from 0.5 by less than 0.001 .

2 (a) Express $\frac{1}{r(r+2)}$ in partial fractions.
(b) Use the method of differences to find

$$
\sum_{r=1}^{48} \frac{1}{r(r+2)}
$$

giving your answer as a rational number.

6 (a) Show that $\frac{1}{(k+2)!}-\frac{k+1}{(k+3)!}=\frac{2}{(k+3)!}$.
(b) Prove by induction that, for all positive integers n,

$$
\sum_{r=1}^{n} \frac{r \times 2^{r}}{(r+2)!}=1-\frac{2^{n+1}}{(n+2)!}
$$

2 (a) Given that

$$
u_{r}=\frac{1}{6} r(r+1)(4 r+11)
$$

show that

$$
u_{r}-u_{r-1}=r(2 r+3)
$$

(b) Hence find the sum of the first hundred terms of the series

$$
1 \times 5+2 \times 7+3 \times 9+\ldots+r(2 r+3)+\ldots
$$

7 (a) Given that

$$
\mathrm{f}(k)=12^{k}+2 \times 5^{k-1}
$$

show that

$$
\mathrm{f}(k+1)-5 \mathrm{f}(k)=a \times 12^{k}
$$

where a is an integer.
(b) Prove by induction that $12^{n}+2 \times 5^{n-1}$ is divisible by 7 for all integers $n \geqslant 1$.
(4 marks)

3 (a) Show that

$$
\begin{equation*}
(r+1)!-(r-1)!=\left(r^{2}+r-1\right)(r-1)! \tag{2marks}
\end{equation*}
$$

(b) Hence show that

$$
\begin{equation*}
\sum_{r=1}^{n}\left(r^{2}+r-1\right)(r-1)!=(n+2) n!-2 \tag{4marks}
\end{equation*}
$$

6 (a) Show that

$$
\begin{equation*}
(k+1)\left(4(k+1)^{2}-1\right)=4 k^{3}+12 k^{2}+11 k+3 \tag{2marks}
\end{equation*}
$$

(b) Prove by induction that, for all integers $n \geqslant 1$,

$$
\begin{equation*}
1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{1}{3} n\left(4 n^{2}-1\right) \tag{6marks}
\end{equation*}
$$

4 The sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
u_{1}=\frac{3}{4} \quad u_{n+1}=\frac{3}{4-u_{n}}
$$

Prove by induction that, for all $n \geqslant 1$,

$$
\begin{equation*}
u_{n}=\frac{3^{n+1}-3}{3^{n+1}-1} \tag{6marks}
\end{equation*}
$$

3 (a) Show that

$$
\frac{2^{r+1}}{r+2}-\frac{2^{r}}{r+1}=\frac{r 2^{r}}{(r+1)(r+2)}
$$

(b) Hence find

$$
\sum_{r=1}^{30} \frac{r 2^{r}}{(r+1)(r+2)}
$$

giving your answer in the form $2^{n}-1$, where n is an integer.

7 (a) Prove by induction that, for all integers $n \geqslant 1$,

$$
\frac{3}{1^{2} \times 2^{2}}+\frac{5}{2^{2} \times 3^{2}}+\frac{7}{3^{2} \times 4^{2}}+\ldots+\frac{2 n+1}{n^{2}(n+1)^{2}}=1-\frac{1}{(n+1)^{2}}
$$

(b) Find the smallest integer n for which the sum of the series differs from 1 by less than 10^{-5}.

3 (a) Show that $\frac{1}{5 r-2}-\frac{1}{5 r+3}=\frac{A}{(5 r-2)(5 r+3)}$, stating the value of the constant A. (2 marks,
(b) Hence use the method of differences to show that

$$
\sum_{r=1}^{n} \frac{1}{(5 r-2)(5 r+3)}=\frac{n}{3(5 n+3)} \quad \quad(4 \text { marks }
$$

(c) Find the value of

$$
\sum_{r=1}^{\infty} \frac{1}{(5 r-2)(5 r+3)}
$$

(I mark,
$7 \quad$ The polynomial $\mathrm{p}(n)$ is given by $\mathrm{p}(n)=(n-1)^{3}+n^{3}+(n+1)^{3}$.
(a) (i) Show that $\mathrm{p}(k+1)-\mathrm{p}(k)$, where k is a positive integer, is a multiple of 9 .
(ii) Prove by induction that $\mathrm{p}(n)$ is a multiple of 9 for all integers $n \geqslant 1$.
(b) Using the result from part (a)(ii), show that $n\left(n^{2}+2\right)$ is a multiple of 3 for any positive integer n.
(2 marks)

3
The sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
u_{1}=2, \quad u_{n+1}=\frac{5 u_{n}-3}{3 u_{n}-1}
$$

Prove by induction that, for all integers $n \geqslant 1$,

$$
\begin{equation*}
u_{n}=\frac{3 n+1}{3 n-1} \tag{6marks}
\end{equation*}
$$

4 (a) Given that $\mathrm{f}(r)=r^{2}\left(2 r^{2}-1\right)$, show that

$$
\mathrm{f}(r)-\mathrm{f}(r-1)=(2 r-1)^{3}
$$

(b) Use the method of differences to show that

$$
\sum_{r=n+1}^{2 n}(2 r-1)^{3}=3 n^{2}\left(10 n^{2}-1\right)
$$

3 (a) Express $(k+1)^{2}+5(k+1)+8$ in the form $k^{2}+a k+b$, where a and b are constants.
(b) Prove by induction that, for all integers $n \geqslant 1$,

$$
\sum_{r=1}^{n} r(r+1)\left(\frac{1}{2}\right)^{r-1}=16-\left(n^{2}+5 n+8\right)\left(\frac{1}{2}\right)^{n-1}
$$

[6 marks]

1 (a) Express $\frac{1}{(r+2) r!}$ in the form $\frac{A}{(r+1)!}+\frac{B}{(r+2)!}$, where A and B are integers.
[3 marks]
(b) Hence find $\sum_{r=1}^{n} \frac{1}{(r+2) r!}$.
[2 marks]

4 The expression $\mathrm{f}(n)$ is given by $\mathrm{f}(n)=2^{4 n+3}+3^{3 n+1}$.
(a) Show that $\mathrm{f}(k+1)-16 \mathrm{f}(k)$ can be expressed in the form $A \times 3^{3 k}$, where A is an integer.
(b) Prove by induction that $\mathrm{f}(n)$ is a multiple of 11 for all integers $n \geqslant 1$.

1 (a) Given that $\mathrm{f}(r)=\frac{1}{4 r-1}$, show that

$$
\mathrm{f}(r)-\mathrm{f}(r+1)=\frac{A}{(4 r-1)(4 r+3)}
$$

where A is an integer.
(b) Use the method of differences to find the value of $\sum_{r=1}^{50} \frac{1}{(4 r-1)(4 r+3)}$, giving your answer as a fraction in its simplest form.

7 Given that $p \geqslant-1$, prove by induction that, for all integers $n \geqslant 1$,

$$
(1+p)^{n} \geqslant 1+n p
$$

2(a)	$\begin{aligned} & u_{r}-u_{r-1}= \\ & \frac{1}{6} r(r+1)(4 r+11)-\frac{1}{6}(r-1) r(4 r+7) \end{aligned}$ Correct expansion in any form, eg $\begin{aligned} & \frac{1}{6} r\left(4 r^{2}+15 r+11-4 r^{2}-3 r+7\right) \\ & =r(2 r+3) \end{aligned}$ Attempt to use method of differences $\begin{aligned} S_{100} & =u_{100}-u_{0} \\ & =691850 \end{aligned}$	M1 A1 Al M1 A1 Al	3	AG CAO
	Total		6	

6(a)	Expansion of $(k+1)\left(4(k+1)^{2}-1\right)$	M1		Any valid method - first step correct
	$=4 k^{3}+12 k^{2}+11 k+3$	AI	2	AG
(b)	Assume true for $n=k$ For $n=k+1$:			
	$\sum_{r=1}^{k+1}(2 r-1)^{2}=\frac{1}{3} k\left(4 k^{2}-1\right)+(2 k+1)^{2}$	M1A1		No LHS M1A0
	$=\frac{1}{3}\left(4 k^{3}+12 k^{2}+11 k+3\right)$	AlF		ft error in $(2 k+1)$
	$=\frac{1}{3}(k+1)\left(4(k+1)^{2}-1\right)$	AI		Using part (a)
	True for $n=1$ shown Proof by induction set out properly (if factorised by 3 linear factors, allow A1 at this particular point)	$\begin{aligned} & \text { B1 } \\ & \text { E1 } \end{aligned}$	6	Dependent on all marks correct
	Total		8	

4	Assume result true for $n=k$ Then $4-\left(\frac{3^{k+1}-3}{3^{k+1}-1}\right)$ $\begin{aligned} & \quad=\frac{3\left(3^{k+1}-1\right)}{4\left(3^{k+1}-1\right)-\left(3^{k+1}-3\right)} \\ & 4 \times 3^{k+1}-3^{k+1}=3^{k+2} \\ & u_{k+1}=\frac{3^{k+2}-3}{3^{k+2}-1} \\ & n=1 \quad \frac{3^{2}-3}{3^{2}-1}=\frac{3}{4}=u_{1} \end{aligned}$ Induction proof set out properly	M1 AI AI AI BI El	6	clearly shown must have earned previous 5 marks

\begin{tabular}{|c|c|c|c|c|}
\hline 3(a) \& Attempt to put LHS over common denominator
$$
\begin{aligned}
& \frac{2^{r+1}(r+1)-2^{r}(r+2)}{(r+1)(r+2)} \\
& =\frac{r\left(2^{r+1}-2^{r}\right)}{(r+1)(r+2)} \\
& =\frac{r 2^{r}}{(r+1)(r+2)} \text { must see } r 2^{r+1}=2 r 2^{r} \\
& \frac{2^{2}}{3}-\frac{2}{2} \\
& \frac{2^{3}}{4}-\frac{2^{2}}{3} \\
& \frac{2^{31}}{32}-\frac{2^{30}}{31} \\
& \mathrm{~S}_{30}=\frac{2^{31}}{32}-1 \text { or } \mathrm{S}_{n}=\frac{2^{n+1}}{n+2}-1
\end{aligned}
$$ \& M1
A1

Al

M1

A1 \& 3 \& | any form |
| :--- |
| clearly shown as AG |
| 3 rows indicated (PI) |

\hline \& \& \& \&

\hline
\end{tabular}

3	$n=1, \frac{3+1}{3-1}=\frac{4}{2}=2$ ($u_{1}=2$ so formula is) true when $n=1$ Assume formula is true for $n=k\left({ }^{*}\right)$ $\begin{aligned} & \left(u_{k+1}=\right) \frac{5 \frac{3 k+1}{3 k-1}-3}{3 \frac{3 k+1}{3 k-1}-1} \\ & \left(u_{k+1} \Rightarrow\right) \frac{5(3 k+1)-3(3 k-1)}{3(3 k+1)-(3 k-1)} \\ & u_{k+1}=\frac{3 k+4}{3 k+2} \text { or } u_{k+1}=\frac{3(k+1)+1}{3(k+1)-1} \end{aligned}$ Hence formula is true for $n=k+1\left({ }^{* *}\right)$ must have lines (*) \& (**) and "Result true for $n=1$ therefore true for $n=2, n=3$ etc by induction,"	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \mathrm{mI} \\ \mathrm{Al} \\ \text { Alcso } \\ \hline \text { El } \end{gathered}$	6	be convinced they have used $u_{n}=\frac{3 n+1}{3 n-1}$ clear attempt at RHS of this formula clear attempt to remove "double fraction" $\frac{6 k+8}{6 k+4}$ must have " $u_{k+1}=$ " on at least this line must also have earned previous 5 marks before El is scored
	Total		6	

Q1	Solution	Mark	Total	Comment
(a)	$\begin{aligned} & r+1=A(r+2)+B \text { or } \\ & \qquad 1=\frac{A(r+2)}{r+1}+\frac{B}{r+1} \end{aligned}$	M1		OE with factorials removed
	either $A=1$ or $B=-1$	A1		correctly obtained
	$\frac{1}{(r+2) r!}=\frac{1}{(r+1)!}-\frac{1}{(r+2)!}$	A1	3	allow if seen in part (b)
(b)	$\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+\ldots$	M1		use of their result from part (a) at least twice
	$\text { Sum }=\frac{1}{2}-\frac{1}{(n+2)!}$	A1	2	must simplify 2 ! and must have scored at least M1 A1 in part (a)
	Total		5	

